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LETTER TO THE EDITOR 

Convergence of an iterative neural network learning algorithm 
for linearly dependent patterns? 

Kenneth W BerrymanS, Mario E Inchiosa, Arthur M Jaffe and Steven 
A JanowskyP 
Department of Physics, Harvard University, Cambridge, MA 02138, USA 

Received 26 April 1989, in final form 13 November 1989 

Abstract. We show that a local iterative learning algorithm of Diederich and Opper 
converges for any set of patterns, including linearly dependent sets, and that the resulting 
coupling constants for a given set of patterns are the same as those given by the pseudo- 
inverse rule for any maximal linearly independent subset of the given set. Thus, the matrix 
of couplings produced by the algorithm is the desired projection matrix onto the subspace 
spanned by the training set. 

In proposing learning rules for neural network associative memories, researchers have 
often excluded certain sets of patterns. For example, the Hopfield model with a 
Hebbian learning rule [4] does not perform well when the patterns to be stored are 
correlated. When the number of patterns increases linearly with the number of neurons, 
even the small overlap of randomly generated patterns causes errors in their storage. 
Also, storage capacity drastically decreases when patterns are ‘biased’ (unequal num- 
bers of ‘on’ and ‘off bits) [l]. 

In [ 6 ] ,  Kanter and Sompolinsky deal with correlated patterns by using the non-local 
pseudoinverse learning rule of Personnaz et al [ 101. They only implement the pseudo- 
inverse rule (inspired by the work of Kohonen [9]) for linearly independent patterns, 
although their formulae extend to the more general case. Diederich and Opper [3] 
enhanced the usefulness of the pseudoinverse rule by providing a local algorithm for 
computing it. Locality of learning algorithms is desirable for their efficient hardware 
implementation in large neural network associative memories. However, Diederich 
and Opper also only characterised the behaviour of their algorithm for linearly indepen- 
dent sets of training patterns. 

Is it necessary to consider storage of a linearly dependent set of training patterns? 
It could occur that the training patterns, presumably data coming from the real world, 
are not linearly independent. We would want our system to be able to handle this 
situation. Also, a rigorous statistical mechanical analysis, such as that of Koch and 
Piasko [8] or Inchiosa [ 5 ]  (reported in a preliminary form in Berryman et al [2]), 
demands understanding learning rule behaviour for all possible sets of input patterns. 
Yet, in the simple case of a set with a pattern appearing twice, the set becomes linearly 

t Work supported in part by National Science Foundation grant PHY/DMS 88-16214. 
$ Address after 1 October 1989: Physics Department, Vanan Buidling, Stanford University, Stanford, CA 
94305, USA 
5 Supported in part by National Science Foundation grant PHY 87-06420. 

0305-4470/90/050223 +06$03.50 @ 1990 IOP Publishing Ltd L223 



L224 Letter to the Editor 

dependent, prohibiting the use of a learning rule implementation which is restricted 
to linearly independent sets. These examples clearly illustrate the need to consider 
storage of linearly dependent patterns. 

In the following we will show that linearly dependent patterns are perfectly accept- 
able inputs for the iterative algorithm of Diederich and Opper. We will show that for 
a given set of linearly dependent patterns the algorithm converges to the same coupling 
constants as for any maximal linearly independent subset of the patterns, resulting in 
a coupling matrix J which is the desired projection matrix. This is the correct set of 
couplings: learning on a maximal linearly independent subset would cause the entire 
training set to be memorised because the pseudoinverse rule automatically memorises 
all valid linear combination states [6]. We will demonstrate the convergence of the 
iterative learning algorithm by exploiting results on Gauss-Seidel iteration for singular 
matrices [7]. Finally, our practical experience with this method indicates that, in the 
examples we have studied, the rate of learning is faster for linearly dependent sets of 
patterns than for a smaller set obtained by first using a linear independence filter. 

Our system has the Hamiltonian 

where SI E {+I ,  -1}.  The coupling constants {J , , }  are given by learning rule I1 of [3], 
with the modification that linearly dependent sets of training patterns are allowed. We 
are primarily concerned with learning, i.e. adjusting { J , }  so that the minima of X are 
appropriately placed. The complementary problem of associative recall consists of 
causing the { S , }  to evolve from an initial condition representing partial knowledge of 
a stored pattern to a local minimum of X representing full recovery of the pattern. In 
fact, Kanter and Sompolinsky show that the prototype patterns and their (rare) valid 
linear combinations which are valid Ising spin states are actually global minima 
of X [6]. 

To govern the dynamics of recall, we use Kanter and Sompolinsky's approach of 
eliminating self-interactions, i.e. we use the synaptic matrix Jl,( 1 - S v ) ,  which preserves 
the locations of the minima of X [6]. Thus, at zero temperature the S, evolve as 
follows: S,  + - S ,  if and only if S,  E,+, JUSJ (0. If self-interaction terms are not elimi- 
nated, they can reduce the size of the basins of attraction for the stored patterns. Such 
terms arise in storing correlated patterns, whether linearly dependent or not. 

The input to the learning rule consists of p N-bit patterns g', g2, . . . , g p  with 
5f E {+l, -1). Roman letters index the N neurons and Greek letters index the p 
patterns. One applies patterns one at a time to the network and updates the couplings. 
The change in J,, in learning cycle 1, 1 = 0, 1,2, . . . , due to presentation of pattern p is 

(2) SJ~,(l, CL)'"-'[ 1 -c k J t k ( f ,  r)f:5f]5:5: 

where Jl , ( f ,  r )  is the value of J,J before the presentation of the pattern, JIJ+ SJ,, is the 
value afterwards, and JIJ(O, 1) = 0.  

Since individual rows of the coupling matrix J evolve independently of each other, 
we can consider just one row, say row i. Writing 9J = JIJ and U: E 576: we have 

r 
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We can rewrite this equation as 

SBj(I, p )  = N-’Sx”(I)uF (4) 

where we are introducing a new set of variables { x ” } ,  p = 1 , 2 ,  . . . , p, called ‘embedding 
strengths’ which evolve according to the equation 

x ” ( I +  1 )  -x’(  I )  = Sx”(1) = 1 -E B;k(  I ,  p)u:: x’(0)  = 0. ( 5 )  
k 

Since the a” may be linearly dependent, the expression of $ as a linear combination 
of e” may not be unique. Equation ( 5 )  defines a particular choice of a (possibly 
non-unique) decomposition of 9 in terms of {a”}: 

$ k ( I ,  p )  = N-’ x u ( / +  l ) a ; +  N - ’  x’(Z)u;  k = l , 2  ,..., N. ( 6 )  
1’ P ” 

Substituting ( 6 )  into ( 5 )  gives the iteration equation 

x ” ( I + ~ ) - x ” ( I ) = ~ -  1 B ’ ” x ” ( Z + l ) -  E B”””x”(I)  (7 )  
* < P  ”3’ 

where B”“ = N - ’ Z k o g u i .  Provided the { x ” ( Z ) }  converge, we obtain from ( 6 )  the 
asymptotic expression 

Bik(m) - N - ’  x ” ( w ) u ; l .  
Y 

We will show that (7) converges to a solution of 

B x =  1 (9) 

for any set of patterns (6’). Our first step will be to show that a solution of (9) always 
exists. Equation (7)  is the Gauss-Seidel iterative method for finding a solution to (9). 
While the Gauss-Seidel method is well known for non-singular systems, we use a 
classic, but less widely known, result of Keller [7] for singular systems. 

Suppose we have a given set of p patterns, with q being the maximal size of any 
linearly independent subset of the patterns. For convenience we assume the first q 
patterns are linearly independent. We can make this assumption without loss of 
generality because writing out (9) in terms of the 5” shows that re-ordering the patterns 
simply corresponds to re-ordering the x”. 

Let B‘ denote the q x q matrix consisting of the first q rows of the first q columns 
of B. Consider the equation obtained by restricting (9) to the first q patterns (x’ and 
1‘ are q-vectors): 

B’x’ = 1‘. (10) 

There exists a unique solution for x‘ if B‘ is invertible. Now since 

a a  / a  

and since the linear independence of the first q patterns implies that XM y”.$ = O  for 
all k if and only if y = 0, we see that (U, B‘u) > 0 for all tc Z 0; i.e. B’ is positive definite 
and therefore invertible. 
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Let x‘= (B‘)-’l‘ ,  the solution of ( lo) ,  and let .t= ( < I ,  22, .  , . , Z4, 0,. . . , 0 )  be a 
p-vector. We claim that 3 is a solution of (9). First notice that since the last p - q 
patterns are linearly dependent on the first q, there exists a set of real numbers { c P a } ,  
p = q + 1 , .  . . , p ,  a = 1, .  . . , q, such that 

&;= C@“t;: 
o = l  

for p > q. Now for p s q, 

while for p > q, 

f B””Z”=&f&Y f B@”f’ 
v = l  ”= 1 

P 
= & Y  1 N - ‘  &;o[Z” 

v = l  k 

P 4 
= & Y  N - l X  c ” “ & ~ u ~ Z “  

V = l  k a = l  

using the linear dependence (12). Then using (&p)’= 1 (again), 

4 P 
(14)=&7 1 cPa&p N - ’ ~ & P & ~ u L f ”  

a = l  ” = l  k 

4 P 
= & Y  1 cPa,fp B””f”  

o = l  ” = I  

4 

=g e@‘“&: = ( Y & f ” =  1. 
a = l  

So we have proved our claim. 
We have shown that for any set of input patterns there exists a solution to the 

system given by equation (9). We now wish to show that the existence of this solution 
is enough to guarantee convergence of the iterative procedure. As a consequence of 
theorems 1 and 2 of Keller [7] we obtain the following. 

Theorem. Let B be a pth-order Hermitian matrix and L be a non-singular matrix of 
order p for which P = L +  Lt - B is positive definite. If Bx = f has a solution, then the 
following two equivalent statements hold if and only if B is positive semidefinite. 

( a )  For every x(0) the sequence { x ( l ) }  of 

Lx( l+  1) = ( L -  B ) x ( I ) +  f I =o, 1,2, .  . , (16) 

converges to a solution of Bx = J  
( b )  Define the iteration matrix T = I - L-IB. For every e ( 0 )  the sequence { e ( I ) }  of 

e ( l + l ) =  T e ( l )  l = O ,  1 , 2 , .  . . (17) 

converges to a vector in the null space of B. 
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Equation (16 )  corresponds to our Gauss-Seidel iteration procedure (7) if we let L 
be the lower triangular part of B (including the diagonal). Since Lpp = BpF = 1, 
det L = 1 and L is invertible. Also, P = L + Lf - B = I, and I is trivially positive definite. 
Our matrix B is positive semidefinite, since 

Since we have already produced a solution to ( 9 ) ,  the conclusions of the theorem apply. 
Using (8), we note that 

Thus { J v }  for the constructed solution i equals { J v }  for the solution in the case of 
linearly independent patterns, 2. 

The iterative procedure gives us a solution of the form x^ = f+  w, where w is some 
vector satisfying Bw =O.  But in that case, 

/ D  

Therefore X p  u f w ”  = 0, and 

p = l  

Equations (19 )  and (21 )  imply the couplings { J v }  produced by the iterative procedure 
are the same as the couplings obtained by considering only the q linearly independent 
patterns. 

Had we chosen a different set of q linearly independent patterns, we would have 
x”= (B”)-Il‘. In analogy with (19 )  we would have $ k [ i ’ ] = $ k [ f ’ ] .  Since X and f’ are 
both solutions of Bx = 1, we have f’ = f + w’, with Bw’ = 0. By analogy with (21)  we 
have 9k[.f’] = $ k [ X ] .  Thus $ k [ i ’ ]  = $ k [ f ]  =$k[?],  verifying the irrelevance of the 
choice of maximal linearly independent subset. 

Finally, let us analyse the resulting matrix J. For the case where the patterns are 
all linearly independent, it is easy to show [ 3 ]  that the iterative learning rule converges 
to the same matrix as that of Personnaz et a1 [ l o ]  

Jv = N - ’  (c-’)’”srg 

where C is the pattern correlation matrix: 

C P U  = N-I t$&k”. 
k 

When the patterns are linearly dependent, we have shown that the iterative procedure 
produces the {.Iu} obtained by restricting (22 )  and (23) to any maximal linearly 
independent subset of the patterns. 

One of the hopes for using neural networks as memory devices is that they behave 
in a ‘fail-soft’ manner-when we try to learn too many patterns, or patterns of the 
wrong type, we hope that most of the knowledge stored within the network remains 
accessible. 
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Many learning rules have difficulty storing strongly correlated patterns. In one 
sense, sets of patterns which are linearly dependent are more strongly correlated than 
any other sets of patterns. Therefore, understanding what happens when we try to 
store linearly dependent patterns should give us some insight into the worst case 
behaviour of such learning rules. 

For the Diederich and Opper algorithm we have shown that even for linearly 
dependent patterns the iterative procedure converges. The result has a nice interpreta- 
tion in terms of the result for any maximal linearly independent subset of the patterns: 
the couplings obtained are identical. Thus, adding linearly dependent patterns to the 
set of stored patterns does not change the couplings. This is as it should be, since the 
pseudoinverse rule coupling matrix is a projection matrix onto the subspace spanned 
by the training patterns [2,10], and adding linearly dependent patterns does not change 
this subspace. 

Typical neural network simulations (or applications) do not check prototype pat- 
terns for linear independence or other criteria needed to ensure consistent behaviour. 
Therefore, learning algorithms must be able to handle gracefully any set of training 
patterns. If neural networks are going to become mainstream computational and 
storage devices, their behaviour on unexpected input must be considered. 
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